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Abstract

The substantial drop of the plasma temperature along magnetic field lines with increasing plasma density is one of the
main features in tokamak divertors. As a result the temperature gradient at the divertor plates becomes very steep and the
boundary condition normally applied for the parallel Mach number M at the target, Mt = 1, cannot be satisfied. In this
case the value of Mt based on the general form of the Bohm criterion, Mt P 1, has to be determined from the continuity of
plasma parameters.

In the present paper a new approach to resolve the Mach number at the target for such a situation is proposed. This
method avoids the singularity problem that arises by treating the particle balance and parallel motion equations in a dif-
ferential form. Instead, the integral representation of the equations is formulated for an arbitrary form of particle and
momentum sources. The approach can also take into account transport perpendicular to the magnetic field lines.

The proposed method is demonstrated on the example of a one-dimensional stationary model for the scrape-off layer
(SOL) plasma and includes the continuity-, parallel momentum- and heat transfer equations. The recycled neutrals are
described in the diffusion approximation. In the case of low density the normal condition Mt = 1 is satisfied and the results
are in agreement with the two-point model. At high enough plasma density solutions with the supersonic flow at the diver-
tor plates, Mt > 1, are found. These states correspond to a partially detached plasma with a temperature of a few eV.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The operational scenario of fusion devices close to the density limit [1] is one of the most challenging tasks
for theoretical modeling. Under these conditions the physical processes inside the scrape-off layer (SOL) and
the divertor volume significantly affect the heat and particle transport in the core and the overall discharge
performance. The favorable detached operation regime exists only in the presence of strong pressure gradients
along the magnetic field in the SOL and leads to increased emission of neutral particles from the divertor vol-
ume [2]. Therefore, the predictive modeling of the edge plasma, which has experienced very significant progress
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during past years from two-point models [3,4] and the onion-skin method [5] to two- and three-dimensional
simulations [6–9], remains an extremely important issue in fusion research.

One of the most critical points is the choice of boundary conditions for the transport equations, in partic-
ular, for the Mach number of the parallel plasma flow at the target plates, Mt. The Bohm criterion [10],
derived from the stability of the sheath region near the surface, specifies only the lowest value: Mt P 1.
Because of this uncertainty, the minimum level, Mt = 1, is often assumed by solving the momentum balance
equation for plasma particles. However, as it has been shown in numerical calculations [11] and analytically
for some simplified cases [3,12], the requirement Mt = 1 can be in contradiction with the transport equations
themselves, in particular, if the plasma temperature gradient is strong enough near the target plate. Such a
situation arises with increasing plasma density in the tokamak and the plasma temperature near the plate
drops to a critical value. Indeed, the pressure gradient accelerates the plasma flow towards the target plates.
On the other hand, plasma looses its momentum due to the friction force caused by the charge-exchange
recombination with the recycled neutrals. For a hydrogen plasma these forces balance each other at a critical
temperature of 3–4 eV.

In some transport codes for the plasma edge a fixed value of Mt is imposed as one of the boundary con-
ditions and the plasma parameters are computed by integrating the transport equations from the plate
towards the SOL main part. In the case of a parallel motion equation of the first order, i.e., without parallel
viscosity, one may try to find the Mt value using an iterative procedure. In a situation requiring Mt > 1 this
approach is, however, numerically unstable [13]. Physically this is due to the fact that the information on the
boundary condition, spreading from the plate with the sound velocity, cannot propagate upstream of a super-
sonic flow [14]. Therefore in Ref. [11] another approach has been applied where the position xs inside the
plasma with M = 1 is determined from the requirement of the continuity of parallel velocity. The transport
equations were integrated from xs in both directions, upstream the subsonic flow toward the SOL and down-
stream the supersonic flow toward the plate. This method required a tricky expansion of the plasma param-
eters in the vicinity of the sonic transition point.

The numerical problems arising from a boundary condition taken in the form Mt P 1 can be avoided by
introducing the parallel ion viscosity and increasing the order of the motion equation [15]. This approach has,
however, its own pitfalls. First, the viscosity should be reduced dramatically near the plate where the parallel
plasma velocity v varies very fast in space and exceeds the thermal one [16]. Normally this is not taken into
account in edge plasma modeling. Second, the boundary condition assumed in the form dv/dx = 0 [3] is ques-
tionable. It is, in particular, in contradiction to the condition of the sheath stability requiring strong electric
field and thus ion acceleration. The arbitrariness of this boundary condition results in an uncertainty of the
solution of all transport equations.

A new approach to treat the situation with a supersonic flow near divertor plates is proposed in this paper.
The particle- and momentum balance equations are analyzed in their integral form. With such a representa-
tion the Mach number at the target Mt, satisfying the Bohm criterion, is obtained from the requirement that a
certain function achieves its maximum at the sonic transition point with M = 1. Moreover, the flow in the sub-
and supersonic region corresponds to different branches of the solution of the algebraic equation.

Thus, the singularity problem appearing in the differential form of the transport equations is avoided. Up to
now only the stationary one-dimensional solutions are analyzed and the parallel plasma viscosity is completely
ignored. However, the generalization on non-stationary conditions with flows perpendicular to the magnetic
field can be done straightforwardly.

A brief description of the model and basic equations are presented in the next section. The condition for
supersonic flow in the SOL is formulated in Section 3. The approach to the solution of the motion equation
and an algorithm for the determination of the parallel Mach number at the target are described in Section 4.
Section 5 contains an example of the transition to detachment in the divertor. The comparison between our
and previous calculations is summarized in Section 6. Concluding remarks are formulated in the last section.

2. Basic equations

The SOL is assumed in a slab geometry as schematically shown in Fig. 1. In the main part, from x = 0 to
x = xd, the SOL plasma is in contact with the confined plasma volume. Here, the particle and the heat fluxes
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Fig. 1. The plasma edge geometry.
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from the plasma core penetrate into the SOL, perpendicular to the magnetic field lines. The sources S and W

corresponding to these fluxes are demonstrated in Fig. 1. In the SOL the plasma flow accelerates toward the
divertor target. After recombination at the divertor plate, charged particles recycle as neutral atoms back into
the SOL. Thus, equilibrium of the system is sustained by the escape of neutral particles from the divertor
region, xd < x 6 xt, into the confined plasma volume. The launched power is lost by the plasma particles
on the target plate and by ionization of recycling neutrals. A one-dimensional model of the SOL includes par-
ticle-, momentum balance- and heat transfer equations along the magnetic field lines. They describe the var-
iation of the plasma density n, parallel velocity v and temperature T assumed to be the same for electrons and
ions in the direction along field lines:
d

dx
ðnvÞ ¼ Sp; ð1Þ

d

dx
ðmnv2 þ 2nT Þ ¼ mvSm; ð2Þ

d

dx
5nvT þ mnv3

2
� jk

dT
dx

� �
¼ SE; ð3Þ
where m is the ion mass and the Spitzer formula is taken for the plasma heat conduction, ji = k0T5/2, with
k0 � 2000 W/m/eV7/2. The particles, momentum and energy sources are given by the relations:
Sp ¼ Shðxd � xÞ þ kinnn� krn2; ð4Þ
Sm ¼ �nnnkcx � n2kr; ð5Þ

SE ¼ W hðxd � xÞ � kinnnEi � n2kr 3T þ mv2

2

� �
� nnnkcx

3

2
T þ mv2

2

� �
: ð6Þ
Here, ki, kr and kcx are the ionization, recombination (radiative and three-body) and charge-exchange rate
coefficients, nn is the density of recycling atoms and Ei . 30 is the effective energy loss of electrons due to exci-
tation and ionization of neutral atoms [17]. Ionization, radiative and three-body recombination rate coeffi-
cients are based on the Refs. [18–20] respectively. The charge-exchange rate coefficients were calculated by
integrating cross-sections times relative velocity over a Maxwellian distribution [21]. The temperature of
the neutral particles and ions was assumed to be equal. The function h(x) is the Heaviside step function: h
(x 6 0) = 0, h (x > 0) = 1. The first term in (4) describes the source due to perpendicular diffusion of charged
particles from the confined plasma, the second one – ionization of neutrals recycled from the target plate, and
the last one – loss by recombination at low temperatures. The ion momentum losses in Eq. (5) include charge-
exchange with neutrals and plasma recombination. We note that the neutral particles penetrate into the plas-
ma perpendicular to the target plates. Since the pitch angle a between magnetic field lines and poloidal divertor
is small the component of their velocity relative to the velocity of ions along the magnetic field lines is negli-
gible. Eq. (6) includes the energy source W caused by the heat flux from the main plasma volume and plasma-
neutral energy exchange by ionization, recombination and charge-exchange.

An adequate description of recycling neutral particles, especially at low plasma temperatures and high den-
sities, requires kinetic models [22,23] or Monte-Carlo simulations [24]. Indeed, at such conditions the plasma
profiles are very inhomogeneous near the target plate. As a consequence, the mean free path of neutral par-
ticles is longer than the characteristic length of the change of the plasma parameters. Nevertheless, for our
qualitative analysis we use a fluid diffusion approximation, which has been often applied earlier [4,25] and
which gives a relatively good agreement with the experimental measurements, see Ref. [26]:
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d

dz
�Dn

dnn

dz

� �
¼ �kinnnþ krn2 � nn

sn
hðxd � xÞ: ð7Þ
Here z = (xt � x) sina is the distance from the target plate and Dn = T/m/n(ki + kcx) is the diffusion coefficient
of neutral particles. The last term in Eq. (7) describes the outflow of neutrals into the confined volume. It bal-
ances the particle flux from the main plasma and permits, therefore, the steady state solution of the equations.
The characteristic escape time sn is equal to vn/D, where vn is the neutral velocity and D is the characteristic
radial width of the SOL. It is assumed that neutrals are reflected back into the plasma at the outer boundary
of the SOL.

In the present approximation we do not consider the parallel neutral momentum transfer, and the parallel
velocity of neutrals is neglected compared to the ion speed v. However, neutrals acquire parallel momentum
after charge-exchange recombination. As a result the relative velocity between ions and neutrals, and thus the
friction force on ions, is smaller than assumed above. This should, in particular, lead to a higher temperature
for the transition to supersonic flow than obtained in this paper.

The boundary conditions for Eqs. (1)–(3) and (7) are imposed by the symmetry of the system at the mid-
plane x = 0:
M ¼ dT=dx ¼ dnn=dz ¼ 0: ð8Þ

At the target plate the Bohm criterion provides the boundary condition for the Mach number:
M P 1: ð9Þ

The continuity of the heat flux imposes the boundary condition for the plasma temperature and its gradient

in the sheath:
�jkdT =dxþ 5nvT ¼ cnvT ; ð10Þ
with M ” v/cs being the Mach number, cs ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2T =m

p
is the ion sound velocity and c � 7.5 is the heat transmis-

sion coefficient to the plate [3]. Finally, the flux of the neutral particles follows the condition of ideal recycling
at the target plates:
�Dndnn=dz ¼ nv sin a: ð11Þ
3. Condition for supersonic flow in SOL

Since the Bohm criterion (9) is an inequality, the lowest value M = 1 at the target is often assumed in SOL
simulations. As one can easily demonstrate this is indeed the only possibility if the plasma temperature near
the target plate is high. Thus, by combining Eqs. (1) and (2), the following differential equation for the Mach
number can be obtained:
ncsð1�M2Þ dM
dx
¼ R � M2ðSp � SmÞ þ Sp þ

ncsMð1þM2Þ
2T

dT
dx
: ð12Þ
Here, the momentum source term Sm is always negative. If the plasma temperature is not significantly lower
than the hydrogen ionization potential, the charged particle source is dominated by ionization of neutrals and
particle source Sp is positive. Besides, the electron parallel heat conduction is strong and the temperature gra-
dient and thus the last term in the right hand side (RHS) is small. As a result the RHS is positive in the whole
plasma region, 0 6 x 6 xt. In such a case, in close vicinity of the point xs with M = 1, Eq. (12) can be approx-
imated by the following equation:
ð1�MÞ dM
dx
’ A ¼ RðxsÞ

2ncs

> 0: ð13Þ
By integrating this equation with the boundary condition M(xs) = 1, one obtains:
M �M2

2
’ Aðx� xsÞ þ

1

2
ð14Þ
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and ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffip

M ’ 1� 2Aðxs � xÞ: ð15Þ
First, in the case in question for M increasing with x only the solution with sign (�) is relevant. Second, there
is no any real solution for x > xs. Thus xs should be the largest possible x, i.e., it can correspond to the target
plate position only.

Now consider the case of temperatures near the plate being much lower than the ionization potential. First,
the particle source term Sp in Eq. (4) becomes negative as the recombination is now the dominating process.
Second, the plasma heat conductivity becomes low and a large negative temperature gradient develops near
the plate. As a result the RHS in Eq. (12) becomes also negative at target plate x = xt. Assuming that
Mt = 1, no real solution for Mach number M is possible for x < xs = xt, since A < 0 in Eq. (15). Therefore,
the Mach number at the target should be larger than one: Mt > 1. This implies that point xs with M = 1 is
located within the plasma. Moreover, the RHS of Eq. (12) is equal to zero at this point, as M(x) is a contin-
uous function. Indeed, since the plasma temperature increases by going from the plate towards the SOL main
part, the source Sp increases and the RHS becomes positive. At the position x = xs the RHS changes sign, i.e.,
R � dR/dx(xs) · (x � xs). Since M � 1 Eq. (12) can be approximated as follows:
ð1�MÞ dM
dx
’ �Bðx� xsÞ ð16Þ
with B ¼ � 1
2ncs

dR
dx ðxsÞ > 0. The solution for Mach number M increasing with x is given by:ffiffiffip
M ’ 1þ Bðx� xsÞ: ð17Þ

Physically, the temperature gradient accelerates the plasma flow from the midplane towards the target and

if this gradient is too strong the value M = 1 can be achieved before the target. One can estimate roughly when
this happens by assuming the RHS of Eq. (12) is equal to zero at the plate. The temperature gradient and neu-
tral density can be evaluated from the boundary conditions (10) and (11). This results in the relation:
ð2ki þ kcxÞ sin a ¼ ðc� 5Þ c2
s

jk
: ð18Þ
For a = 0.05 one gets Tt ” T(xt) < 4 eV as the condition necessary for the supersonic flow to the plate.

4. Approach for numerical treatment of supersonic flow in SOL

The procedure applied in Ref. [11] was based on direct integration of Eqs. (1), (3) and (12) in the following
way. The RHS of Eq. (12) was computed with the assumed profiles for the density n(x), Mach number M(x)
and temperature T(x). Near the SOL symmetry plane, x = 0, dT/dx is small and the RHS is positive. For stan-
dard situations with Mt = 1 it is also positive near the target. If, however, this is not the case a supersonic flow
should be expected in this region otherwise the Bohm condition cannot be satisfied. In order to presume the
continuity of Mach number one has to assume that M = 1 at the point xs where the RHS changes its sign.
From this point Eq. (12) can be integrated in both directions towards the main part of the SOL and towards
the target plate, in order to find the new approximation for M(x). However, as it was demonstrated in the
previous section, in order to start this integration one has to find the derivative of the RHS at the point xs.
This procedure is not fully straightforward and can provide a large error.

In this paper we propose another approach by using an integral equivalent of Eq. (12). Moreover, this
method allows to determine the Mach number at the target plate Mt and can be used in codes operating with
parallel viscosity. If some approximation to the solution of the system of Eqs. (1)–(3) is assumed, the conti-
nuity equation (1) can be integrated providing the particle flux density:Z
ncsM ¼ ntcstM t �
xt

x
Sp dx0; ð19Þ
where cst is the ion sound velocity at the target plate. The boundary condition M = 0 at the symmetry plane
with x = 0, requires:
ntcstM t ¼
Z xt

0

Sp dx0: ð20Þ
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By integrating the momentum equation (2), we obtain
nc2
s ð1þM2Þ ¼ ntc2

stð1þM2
t Þ �

Z xt

x
mvSm dx0: ð21Þ
In the latter n(x) and nt can be expressed through other variables by using Eqs. (19) and (20), and one obtains:
MðxÞ
1þM2ðxÞ

¼ F ðx;M tÞ �
M tGpðxÞ

1þM2
t GmðxÞ

�

ffiffiffiffiffiffiffiffiffi
T ðxÞ
T t

s
;

GpðxÞ ¼ 1� 1

ntcstM t

Z xt

x
Sp dx0;

GmðxÞ ¼ 1� 1

ntcstM2
t

Z xt

x

ffiffiffiffiffi
T
T t

r
MSm dx0:

ð22Þ
Eq. (22) can be resolved as a quadratic one in order to obtain the Mach number profile:
M�ðxÞ ¼
1

2F ðxÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

4F 2ðxÞ
� 1

s
: ð23Þ
These solutions include, however, Mt as unknown parameter. In order to find the Mach number at the target
Eq. (22) has to be analyzed in details.

The left side (LHS) of Eq. (22) approaches its maximum value 1/2 at a point where the Mach number
M = 1. Consider now the behavior of the RHS of the same equation. At high plasma temperature the recom-
bination can be neglected in the particle source. At this condition the source term Sp > 0 and Gp(x) decreases
monotonically from 1 to 0 by moving away from the target. Since momentum source Sm is negative, Gm(x)
increases from its minimum value 1 at the target with decreasing x. Thus, the first factor in F(x,Mt) decreases
by moving from the target. If the temperature variation is weak, the decay of the first factor is dominating in
the RHS of Eq. (22) and the maximum value of F is achieved already at the target and is equal to F max ¼ M t

1þM2
t
.

Since Fmax has to be the same as the maximum of the LHS, 1/2, it follows that Mt = 1. One can see that only
the solution M�(x) can satisfy simultaneously to this requirement and to the boundary condition at the sym-
metry plane, M (x = 0) = 0. If, however, the temperature increases fast enough with decreasing x, then func-
tion F approaches its maximum value Fmax at some point x* < xt and Fmax depends on Mt. This is
demonstrated in Fig. 2 by F(x,Mt) computed for the conditions described in the next section. The
requirements
F ðx�Þ ¼ 1=2 ð24Þ

and
dF =dxðx�Þ ¼ 0 ð25Þ

defines both x* and Mt. First, as it follows from Eq. (23), M(x*) = 1, i.e., x* is the position of the sonic tran-
sition. Second, one can find that:
dF
dx
¼ F � 1

Gp

dGp

dx
� M2

t

1þM2
t Gm

dGm

dx
� 1

2T
dT
dx

� �
: ð26Þ
From Eq. (24) we obtain
M2
t

1þM2
t Gm

¼ M t

2Gp

ffiffiffiffiffi
T t

T

r
ð27Þ
and, by using the definitions of Sp, Sm and Eqs. (19) and (20), Eq. (25) is reduced to the following equation for
x*:
2Spðx�Þ � Smðx�Þ ¼
ncs

T
dT
dx
ðx�Þ: ð28Þ
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Fig. 2. The RHS of Eq. (22), F(x,Mt), as a function of x for different Mt values.
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One can see that this equation coincides with the requirement of zero RHS of Eq. (12) in the sonic point. If
x* is found, Mt can be determined by solving Eq. (24) for Mt > 1:
M t ¼
GP ðx�Þ
Gmðx�Þ

ffiffiffiffiffiffiffiffiffiffiffi
T ðx�Þ

T t

s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GP ðx�Þ
Gmðx�Þ

� �2 T ðx�Þ
T t

� 1

s
: ð29Þ
The total profile of the Mach number is given by M- at 0 6 x 6 x* and by M+ at x* 6 x 6 xt. Only this com-
bination satisfies the boundary conditions M (x = 0) = 0 and M (x = xt) = Mt > 1. If Mt is not equal to the
value given by Eq. (29) and Fmax 6¼ 1/2, it is easy to demonstrate that M(x) cannot be real and continuous.
Assume that Mt is too small and Fmax > 1/2. Then there is no any real solution in the range xa < x < xb, where
xa,b are defined by the conditions F(xa,b) = 1/2. If however Mt is so large that Fmax < 1/2, one has to choose
again M- at 0 6 x 6 x* and M+ at x* 6 x 6 xt. Thus there is a jump in the Mach number at x* equal to:
dM ¼ Mþðx�Þ �M�ðx�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=F 2

max � 4
q

: ð30Þ
Finally, the particle and momentum sources, Sp and Sm, have been selected without any restrictions and can
include the divergence of the particle and momentum fluxes perpendicular to the magnetic field. Therefore the
method proposed can be applied to two- or three-dimensional models.

5. Results of calculations

The approach proposed has been applied to investigate the transition to the detachment mode in the diver-
tor by increasing the plasma density at the SOL symmetry plane x = 0. For this purpose the input power to the
SOL W and the density at the midplane nm or at the target nt are considered as the input parameters to the
model. In this case the source term S results from the calculations. The set of Eqs. (3), (19) and (23) for the
determination of T (x = xt), n (x = xt) and M (x = xt), respectively, has been solved by iterations. The geomet-
rical parameters correspond to the tokamak JET: the total connection length xt = 50 m, the distance from the
midplane up to the X-point xd = 45 m, the pitch angle of the magnetic field a = 5�, the radial width of the SOL
D = 2 cm. The heating power density due to heat conduction into the SOL from the confined plasma volume
W = 1 MW/m3. Fig. 3 shows the calculated nm-dependence of the ion saturation current ntcstMt, ion momen-
tum ntT tð1þM2

t Þ and Mach number at the target plate Mt.
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The SOL heat transport is dominated by the convection for midplane densities below 1.2 · 1019 m�3 and
the ion saturation current scales as n2=3

m (curve 1). This regime is referred to as the sheath-limited one. At higher
densities, up to about 2.5 · 1019 m�3, the SOL plasma is in the high recycling regime, where the parallel heat
conduction dominates, and the ion saturation current scales as n2

m (curve 2). For these regimes our results are
in agreement with the two-point model [3].

The transition from the high-recycling regime to partial detachment from the target is characterized by the
deviation of the latter dependence and by the drop of the total momentum. This happens at a critical nm being
higher than 2.5 · 1019 m�3. At this transition, however, the plasma is still in the subsonic region. The transi-
tion to the supersonic flow occurs at the density of 3.4 · 1019 m�3 and the temperature of 3 eV at the target. It
is interesting to note, that at this transition the Mach number at the target increases almost linearly with nm, as
it was also obtained in Ref. [11]. When Tt drops below 1 eV the density dependence of Mt becomes signifi-
cantly non-linear. The profiles of the plasma parameters computed for nm = 3.5 · 1019 m�3 are demonstrated
in Fig. 4. The plasma pressure starts to drop at the position of the ionization front where the particle source
and momentum sink approach their maximum levels. After this position the plasma density decreases and the
Mach number exceeds one. The plasma behavior for higher nm has not been successfully modeled up to now
because of numerical problems occurring when the plasma temperature near the plate drops significantly
below 1 eV. At these temperatures the diffusion approximation does not reproduce the neutral particle losses
into the confined volume. The corresponding development of the model will be done in future.
6. Method validation

In order to validate the method proposed and to illuminate its important features, we compare our results
with those of Ref. [25] where the minimum Mach number at the target plate, Mt = 1, has been adopted. For
this comparison impurity radiation has been included into the present model by adding the term SI = �nn2-

LI(T) to the energy loss SE, Eq. (6). Here n = 0.05 is the relative concentration of carbon impurity and LI is the
impurity rate computed according to the corona model [27]. In addition as in Ref. [25] the SOL has been
assumed fully opaque for neutrals by taken sn =1 in Eq. (7).



0.5
1

1.5
2

2.5

P
re

ss
ur

e,
 (

10
21

,e
V

·m
-3

)
 0
 3
 6
 9

 12

T
em

pe
ra

tu
re

,
 (

eV
)

 1.5

 2

 2.5

 3

D
en

si
ty

,
 (

10
20

 m
-3

)

0

0.5

1

1.5

5049.9849.9649.9449.9249.9

M
ac

h 
N

um
be

r

Connection length, (m)

Fig. 4. Plasma parameter profiles computed for nm = 3.5 · 1019 m�3.

0

5

 10

 15

 20

 25

 1.2  1.4  1.6  1.8  2  2.2T
em

pe
ra

tu
re

 a
t t

he
 ta

rg
et

, e
V

Input power into the SOL, MW/m3

Fig. 5. The power density dependence of the plasma temperature near the target computed with the present model (solid line with squares)
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Fig. 5 shows the temperature at the target plate versus the input power density W. In our computation dem-
onstrated by the solid curve the density at the target nt was chosen the same as in Ref. [25]. One can see that for
the power density range in question both models provide close results; the relatively small deviation is most
probably due to differences in the data of atomic processes. No stationary solutions were found in Ref. [25] for
an input power lower than the range in Fig. 5 and temperatures at the target below 2 eV. The model applied
there allowed description of non-stationary states and under such conditions a front of cold plasma moving to
the main part of the SOL was observed. The present approach, which takes into account the development of a
supersonic flow with Mt > 1 provides stationary states even in this case with Tt down to 0.5 eV, see Fig. 6. The
dependences here have been found by keeping the density at the midplane constant and equal to
2.24 · 1013 cm�3.
7. Conclusions

A new approach for the solution of the plasma equations in the SOL with a supersonic flow is proposed.
This method avoids the consideration of the motion equation in the differential form and therefore the diffi-
culties connected with the singularity at the sonic transition. For the given profiles of the particle source and
momentum sink this position can be determined and the Mach number at the target plate can be calculated.
The latter can be used as a boundary condition for the Mach number in the edge transport codes operating
with ion parallel viscosity. The approach can be used with sources including the divergence of flux components
perpendicular to the magnetic field, i.e., to be expanded to two- and three-dimensional transport models.

This method has been implemented into a stationary one-dimensional model for the SOL. The results of
calculations are in agreement with a two-point model in the sheath-limited regime at low plasma density
and in the high-recycling regime at the intermediate density. By transition to the partial detachment mode
the temperature gradient accelerates the plasma to the sonic velocity inside the SOL and a region with a super-
sonic flow appears close to the target plate.
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